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VARIATIONAL SYSTEMS

Consider the variational system (VS)

W(z,\) = f(z) + VP(2)*A =0, I€ N@(Cb(ac))

where f: R" — IR" is a C1 while ®: R™ — IR™ is a C2 mappings,

© C IR™ is a closed set with Ng standing for its (limiting)

normal cone. A major source for such systems comes from

KKT in constrained optimization (CO)

minimize og(x) subject to d(z) € ©

with f = Vyg. When © is a convex cone, the latter problems
are known as conic programs



ICE-CREAM CONE IN 3D




SUBGRADIENT GRAPHICAL DERIVATIVE

The graphical derivative of a set-valued mapping F': IR" = IRP
at (z,y) € gph F' is

DF(Z,7)(u) = {v € R?| (u,v) € T((Z,7):9Ph F)}, ue R"
where T'(z;2) is a contingent cone to Q2 at z defined by
T(z,Q2) = {fw S Rm‘ =g 2 z, ap > 0, ap(zp — 2) — w}

We use the 2nd-order subgradient graphical derivative con-
struction DO while noting that for 6 € C2 we have

(Dae) (z e(z))(u) - {v29(z)u}, u e R™

For various important classes of extended-real-valued functions
6 considered below the construction Do6 is explicitly calculated
entirely via the given data of 6



CRITICAL AND NONCRITICAL MULTIPLIERS

Given x € IR"™ satisfying the stationary condition

0 € f(z) + 0(6g o ®)(z)

we define the set of Lagrange multipliers associated with x by

A(T) = {/\ c R™ \ W(Z,\) =0, \¢c N@(Cb(af))}

DEFINITION (BM-Sarabil8) The multiplier A € A(Z) is crit-
ical if there is & %= O satisfying

0 € VoW (F, N)E + VO (2)*DNg (P (), X) (Vo (7))

The Lagrange multiplier X € A(Z) is noncritical when the above
inclusion admits only the trivial solution & = 0.



ORIGINAL DEFINITION AND DISCUSSION

ORIGINAL DEFINITION (Izmailov05)for 6 = §;qym (i.e. for
KKT systems in NLPs with smooth equality constraints): the
multiplier X is critical if the primal-dual system

VoW (Z, )€ ergeVo(z)*, VO(Z)é=0

admits a nontrivial solution

Izmailov, Solodov, and their collaborators demonstrate that
critical multipliers are largely responsible for slow convergence
of major primal-dual algorithms of optimization. This is due to
the fact that the set of critical multipliers is an attractor for
the dual sequence of multipliers {\;.} in such algorithms and
thus slow down the convergence of the primal sequence {x.}
in numerical methods. Therefore, critical multipliers should be
ruled out for appropriate classes of stationary/optimal solutions
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REDUCIBLE SETS

DEFINITION A closed set © C IR™ is C2-cone reducible at
z = d(x) € © to a closed convex subcone C C IRP if there
exist a neighborhood O C IR™ of z and a C2-smooth mapping
h: IR™ — IRP such that

ONo = {z e O | h(z) € C}, h(z) = 0, Vh(z) is surjective

In contrast to the classical definition by Bonnans and Shapiro
(2000), we do not assume that C is pointed and © is convex

EXAMPLES: second-order/Lorentz/ice-cream cone and their
products, SDP cone, copositive cone, and other major con-
straint systems in conic programming.



CRITICAL MULTIPLIERS FOR REDUCIBLE SETS

THEOREM Let z be a stationary point, X € A(Z), © be C2-
cone reducible at z := ®(z) to a closed convex cone C, let

Ko(zZ,2) = To(2) N {\}+ with X € Ng(z)

be the critical cone to © at z for A, and let & be a unique
solution to the system

A= Vh(2)'E, §€Ne(h(2)
Then ) is critical multiplier if and only if the system

VoW (Z, )€+ Vo(Z)*n =0
n— V(i h) (DVS(D)E € N .3 (VP (@)E)
admits a solution (&,7) € IR™ x IR™ such that £ # 0



CALMNESS PROPERTIES OF MULTIFUNCTIONS

DEFINITION We say that a set-valued mapping F': IR" = IR™
is calm at (z,y) € gph F if there exist £ > 0 and a neighborhood
U of x such that

F(x)nV C F(z) + l||lx — z|[IB for all x €U

where IB stands for the closed unit ball. The isolated calmness
property of F' at (z,y) is defined by

F(z) NV C{j} + Lz —z|B forallz € U

It is well known that the calmness and isolated calmness prop-
erties are equivalent to metric subregularity and strong metric
subregularity of the inverse mapping F~1at (y,x), respectively



CANONICAL PERTURBATION AND SEMI-ISOLATED CALMNESS

Consider the mapping G: IR" x IR™ = IR™ x IR™ given by

| W, N) 0
o= | Y |+ waiow |

and the solution map to the canonical perturbation of VS
S(v,w) = {(:U,)\) € R"xIR™ ’ (v,w) € G(az,)\)}, (v,w) € R"xIR™

DEFINITION Given a solution (z, ) to (VS), we say the semi-
isolated calmness holds for S if the exist ¢ > 0, ¢ > 0, and
neighborhoods V x W of (0,0) € IR"™ x IR™ such that

S(v, w)NBe(Z, X) C [{T}xA@)|+¢(|Jvl|+]lw]) B for (v,w) € VxW



CHARACTERIZATIONS OF NONCRITICAL MULTIPLIERS

THEOREM Let (z,)\) be a solution to the variational system
(VS). Consider the properties

(i) The Lagrange multiplier A € A(Z) is noncritical

(ii) There are numbers ¢ > 0, £ > 0 and neighborhoods (V, W)
of (0,0) € IR™ x IR™ such the semi-isolated calmness holds
(iii) There are numbers € > 0 and £ > 0 with the error bound

|lz—Z|+d(X A@)) < L(I1W(x, V[4d(P(2); Ngt(V)), (,2) € Be(Z,X)

Then we have the assertions

(a) Implications (iii)<=(ii)==-(i) always fulfill

(b) If © is C2-cone reducible at z = ®(z) to a closed convex
cone C, if the set

Ko(Z,N)* — [K@(Z, N)* N ker Vcb(f)*}

10



is closed, and if the Lagrange multiplier mapping

Mz (v, w) = {/\ c R™ ) (v, w) € G(;E,A)} for all (v,w) € R"x R™
is calm at ((0,0), ), then the converse (i)==-(ii) also holds
Note that the imposed calmness and closedness assumptions

hold automatically if © is a convex polyhedron (by Hoffman’s
lemma). Otherwise, they are essential for noncriticality



SPECIAL CASE

THEOREM Let (z,)\) be a solution to the variational system
(VS). Then the following are equivalent

(i) The Lagrange multiplier A € A(z) is noncritical, A(Z) = {\},
and the Lagrange multiplier mapping M3z is calm at ((0,0), )
(ii) The solution mapping S is isolated calm at ((0,0), (z,\))

Here closedness assumption holds automatically since we can
show that

Ko(Z,2)* — \[K@(Z, X)* N ker Vcb(;i)*l = Ko(z,2)*
={0}
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SECOND-ORDER CONDITIONS

DEFINITION Let (Z,)\) be a solution to (VS) under the C2-
cone reducibility of ©. The the second-order condition is

(VaW(F,N)E,€) 4+ (V2(1, ) (VS (E)E, VO (2)E) > 0

for all 0% £ € IR" with V& (2)¢ € Kg(z, M)
In the case of constrained optimization (CO) this condition
reduces to the second-order sufficient condition

(V2,L(Z, N, u) + (V2{i, h) (Z) VP (Z)u, VO (Z)u) > 0
for all 0 #u € IR" with V& (2)u € Kg(z,\)
which can be equivalent described via the sigma term. The

latter is a bit stronger than the classical second-order sufficient
condition for (CO) corresponding to

5 <
XES/[\JC%) {<Vm:L(x, A)u, u>}

while it ensures the multiplier noncriticality
12



NONCRITICALITY UNDER SECOND-ORDER CONDITION

THEOREM Let (Z,)) be a solution to (VS), let © be C2-cone
reducible at z = d(z) to a closed convex cone C, and let the
multiplier mapping Mz be calm at ((0,0),)). If the second-
order condition holds, then the solution map S from is semi-
isolatedly calm at ((0,0),(z,))), and hence X is a noncritical
multiplier corresponding to x
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NONCRITICALITY UNDER STRICT COMPLEMENTARITY

Strict complementarity holds at x on (VS) if there exists there
A € A(x) such that A € ri Ng(@(Zz)) (Bonnans-Shapiro, 2000)

THEOREM Let ¥ be a stationary point for (VS), let © be
C2-cone reducible at z = ®(Z) to a closed convex cone C, and
let the strict complementarity condition hold at z. Then a
Lagrange multiplier A € A(Z) is noncritical if and only if either
semi-isolated calmness or error bound condition is satisfied

Here we do not impose the calmness and closedness assump-
tions of the general characterization theorem for noncriticality
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SEQUENTIAL QUADRATIC PROGRAMMING METHOD

Consider the constrained optimization problem

minimize ¢(z) subject to ®(z) € ©

ALGORITHM (basic SQP method) Choose any (zp, \;) €
IR" x IR™ and set £k =0

o If (z;, ;) satisfies the KKT system, then stop

e Compute (241, A\p4+1) as a solution to the KKT system (with
Hj, = V2L(xg, Ap))

min ¢(zy) + (Vo(zg), z — 25) + 5(H(zg) (@ — 25), ¢ — o)
subject to ®(z) + VO (zp) (2 — x) € ©

e Increase k by 1 and then go back to Step 1
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SUPERLINEAR CONVERGENCE OF SQP METHOD

THEOREM Assume that
e T is a local minimizer and A(z) = {)\}

e )\ is noncritical
e The multiplier mapping M3 is calm at ((0,0), )

Then for any starting point (zg, A\g) sufficiently close to (z, ),
the SQP method converges to (z,)\) and the rate of conver-
gence is superlinear
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FULL STABILITY OF LOCAL MINIMIZERS

Following [LevPolRoc00], consider the two-parameter pertur-
bation (2P) of (CO) defined by
minimize ¢g(xz) + 9<CD(:1:) —|—p2) — (p1,2), x=€ R"

For fixed v > 0 and parameters (p1,p>) € R" x IR' define

my(prip2) = inf_ {po(@) +0(P(2) +p2) = (p1,2)

M (p1,p2) = argmin{io(z) 4 0(P(2) + p2) — (p1,2)| & — T|| < 7}

Then z is a fully stable locally optimal solution to (2P) if

the mapping (p1,p2) — M, (p1,p2) is locally single-valued and
Lipschitzian with M,(0,0) = {z} and the function (p1,p2) —
m~(p1,p2) is locally Lipschitzian around (0,0) for some v > 0
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EXCLUDING CRITICAL MULTIPLIERS

THEOREM [M19] Let z be a fully stable local optimal solution
to (CO) when either 6 € CPWL or 6§ = §r where I is C2-
reducible Then the Lagrange multiplier set Acom(z) in does
not include any critical multipliers

By now we have complete second-order characterizations of full
stability for various classes of optimization and optimal control
problems as well as variational systems; see, e.g., [MorNghiaRoc16]
with the references therein. This allows us to efficiently deter-
mine settings where critical multipliers do not appear and thus
slow convergence is eliminated

Tilt stability (p» = 0) may not rule out critical multipliers, but
it does under certain nondegeneracy conditions as well as in
some other cases
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